skip to main content


Search for: All records

Creators/Authors contains: "xu, Jiejun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Knowledge graph has been widely used in fact checking, owing to its capability to provide crucial background knowledge to help verify claims. Traditional fact checking works mainly focus on analyzing a single claim but have largely ignored analysis on the semantic consistency of pair-wise claims, despite its key importance in the real-world applications, e.g., multimodal fake news detection. This paper proposes a graph neural network based model INSPECTOR for pair-wise fact checking. Given a pair of claims, INSPECTOR aims to detect the potential semantic inconsistency of the input claims. The main idea of INSPECTOR is to use a graph attention neural network to learn a graph embedding for each claim in the pair, then use a tensor neural network to classify this pair of claims as consistent vs. inconsistent. The experiment results show that our algorithm outperforms state-of-the-art methods, with a higher accuracy and a lower variance. 
    more » « less
  2. Knowledge graph reasoning plays a pivotal role in many real-world applications, such as network alignment, computational fact-checking, recommendation, and many more. Among these applications, knowledge graph completion (KGC) and multi-hop question answering over knowledge graph (Multi-hop KGQA) are two representative reasoning tasks. In the vast majority of the existing works, the two tasks are considered separately with different models or algorithms. However, we envision that KGC and Multi-hop KGQA are closely related to each other. Therefore, the two tasks will benefit from each other if they are approached adequately. In this work, we propose a neural model named BiNet to jointly handle KGC and multi-hop KGQA, and formulate it as a multi-task learning problem. Specifically, our proposed model leverages a shared embedding space and an answer scoring module, which allows the two tasks to automatically share latent features and learn the interactions between natural language question decoder and answer scoring module. Compared to the existing methods, the proposed BiNet model addresses both multi-hop KGQA and KGC tasks simultaneously with superior performance. Experiment results show that BiNet outperforms state-of-the-art methods on a wide range of KGQA and KGC benchmark datasets. 
    more » « less
  3. Dense subgraph detection is a fundamental building block for a va- riety of applications. Most of the existing methods aim to discover dense subgraphs within either a single network or a multi-view network while ignoring the informative node dependencies across multiple layers of networks in a complex system. To date, it largely remains a daunting task to detect dense subgraphs on multi-layered networks. In this paper, we formulate the problem of dense sub- graph detection on multi-layered networks based on cross-layer consistency principle. We further propose a novel algorithm Des- tine based on projected gradient descent with the following ad- vantages. First, armed with the cross-layer dependencies, Destine is able to detect significantly more accurate and meaningful dense subgraphs at each layer. Second, it scales linearly w.r.t. the num- ber of links in the multi-layered network. Extensive experiments demonstrate the efficacy of the proposed Destine algorithm in various cases. 
    more » « less
  4. null (Ed.)
    Reasoning is a fundamental capability for harnessing valuable insight, knowledge and patterns from knowledge graphs. Existing work has primarily been focusing on point-wise reasoning, including search, link prediction, entity prediction, subgraph matching and so on. This paper introduces comparative reasoning over knowledge graphs, which aims to infer the commonality and inconsistency with respect to multiple pieces of clues. We envision that the comparative reasoning will complement and expand the existing point-wise reasoning over knowledge graphs. In detail, we develop KompaRe, the first of its kind prototype system that provides comparative reasoning capability over large knowledge graphs. We present both the system architecture and its core algorithms, including knowledge segment extraction, pairwise reasoning and collective reasoning. Empirical evaluations demonstrate the efficacy of the proposed KompaRe. 
    more » « less
  5. Subgraph matching is a core primitive across a number of disciplines, ranging from data mining, databases, information retrieval, computer vision to natural language processing. Despite decades of efforts, it is still highly challenging to balance between the matching accuracy and the computational efficiency, especially when the query graph and/or the data graph are large. In this paper, we propose an index-based algorithm (G-FINDER) to find the top-k approximate matching subgraphs. At the heart of the proposed algorithm are two techniques, including (1) a novel auxiliary data structure (LOOKUP-TABLE) in conjunction with a neighborhood expansion method to effectively and efficiently index candidate vertices, and (2) a dynamic filtering and refinement strategy to prune the false candidates at an early stage. The proposed G-FINDER bears some distinctive features, including (1) generality, being able to handle different types of inexact matching (e.g., missing nodes, missing edges, intermediate vertices) on node attributed and/or edge attributed graphs or multigraphs; (2) effectiveness, achieving up to 30% F1-Score improvement over the best known competitor; and (3) efficiency, scaling near-linearly w.r.t. the size of the data graph as well as the query graph. 
    more » « less
  6. Network alignment is a fundamental task in many high-impact applications. Most of the existing approaches either explicitly or implicitly consider the alignment matrix as a linear transformation to map one network to another, and might overlook the complicated alignment relationship across networks. On the other hand, node representation learning based alignment methods are hampered by the incomparability among the node representations of different networks. In this paper, we propose a unified semi-supervised deep model (ORIGIN) that simultaneously finds the non-rigid network alignment and learns node representations in multiple networks in a mutually beneficial way. The key idea is to learn node representations by the effective graph convolutional networks, which subsequently enable us to formulate network alignment as a point set alignment problem. The proposed method offers two distinctive advantages. First (node representations), unlike the existing graph convolutional networks that aggregate the node information within a single network, we can effectively aggregate the auxiliary information from multiple sources, achieving far-reaching node representations. Second (network alignment), guided by the highquality node representations, our proposed non-rigid point set alignment approach overcomes the bottleneck of the linear transformation assumption. We conduct extensive experiments that demonstrate the proposed non-rigid alignment method is (1) effective, outperforming both the state-of-the-art linear transformation-based methods and node representation based methods, and (2) efficient, with a comparable computational time between the proposed multi-network representation learning component and its single-network counterpart. 
    more » « less
  7. Network alignment and network completion are two fundamental cornerstones behind many high-impact graph mining applications. The state-of-the-arts have been addressing these tasks in parallel. In this paper, we argue that network alignment and completion are inherently complementary with each other, and hence propose to jointly address them so that the two tasks can benefit from each other. We formulate it from the optimization perspective, and propose an effective algorithm iNEAT to solve it. The proposed method offers two distinctive advantages. First (Alignment accuracy), our method benefits from higher-quality input networks while mitigates the effect of incorrectly inferred links introduced by the completion task itself. Second (Alignment efficiency), thanks to the low-rank structure of the complete networks and alignment matrix, the alignment can be significantly accelerated. The extensive experiments demonstrate the performance of our algorithm. 
    more » « less